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A Nonlinear Disturbance Observer for Multivariable Systems and Its Application
to Magnetic Bearing Systems

Xinkai Chen, Chun-Yi Su, and Toshio Fukuda

Abstract—This paper proposes a new nonlinear-disturbance
observer for multivariable minimum-phase systems with arbitrary
relative degrees. The model uncertainties and the system nonlin-
earities are treated as disturbances. The estimation of individual
disturbances is independent of each other and the derivatives of
the disturbances can be independently estimated. The proposed
formulation is inspired by the variable structure-control method
and adaptive algorithms where the a priori information concerning
the upper bounds of the disturbances and their derivatives is not
required. The nonlinear-disturbance observer is robust to the
types of disturbances. Stability analysis shows that the estimation
error decreases exponentially to a steady value, which is deter-
mined by the design parameters. To illustrate the method, the
proposed design is applied to a vertical-shaft magnetic-bearing
system where the rotational disturbances and their derivatives are
estimated based on a linearized model of the rotational motion.
Simulation results show the effectiveness of the proposed method.

Index Terms—Disturbance observer, magnetic bearing systems,
minimum phase systems, multivariable systems.

I. INTRODUCTION

RECENTLY, design of disturbance observers has received
considerable attention and many different schemes have

been suggested [1], [9], [10], [14], [16]. The motivation is sug-
gested by the fact that if the disturbances can be estimated,
then control of the uncertain dynamic systems with disturbances
may become easier. For example, the controller with distur-
bance-cancellation functions can be easily constructed by using
the estimated disturbances [1]. The construction of the distur-
bance observers, similar to that of state observers, has an im-
portant implication in practical applications.

Among the many suggested disturbance-observer techniques,
the approximate differentiator type [9], [16] and -type
[10] formulations have been popularly applied in the design of
tracking controllers for motion-control systems. The procedure
of the first approach closes an inner loop around the controlled
plant to reject disturbances and force the input–output charac-
teristics of this inner loop to approximate a “nominal” plant
model at low frequencies. Tuning of the loop is accomplished
through adjustment of a low-pass filter. Since the plant approx-
imates a nominal model at low frequencies, overall closed-loop
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dynamics are usually well known and feedforward techniques
are often applied. The second approach makes the best use of
the merits in control [10]. But there are some shortcomings
to these approaches. A fatal one is that a satisfactory control
can hardly be obtained when the types of the disturbances are
unknown and the model uncertainties exist [9], [10]. Another is
that these formulations can only cope with some low-frequency
disturbances. It should be mentioned that an important result of
estimating the frequency of a signal is proposed recently in [7].

Because of the excellent robustness to uncertainties of
the variable structure systems (VSS) sliding-mode method
[17]–[19], it is found a lot of applications in state estimation [3],
disturbance estimation [1], fault detection [4], etc. This paper
proposes a nonlinear-disturbance observer for multivariable
systems based on the VSS approach. As a matter of fact, the
scheme developed in [1], which is based on the VSS “equivalent
control” method belongs to this category, where the knowledge
of the upper bounds of the disturbances is required. However,
the “equivalent control” method is not strict (because, on the
sliding surface , it cannot be proved that the derivative
of is also zero) and the a priori knowledge about the upper
bound may not be easily obtained in practice.

A common feature of the disturbance observers in [1], [9] and
[16] is that they are designed only for single-disturbance single-
output uncertain systems. Even though the method developed in
[10] can cope with multivariable systems, it can only deal with a
very limited class of disturbances. It is well known that most of
the practical control systems are multivariable systems, such as,
to name a few, robots and magnetic bearing systems. However,
extensions of the schemes in [1], [9], and [16] to multivariable
uncertain systems may not be easy or, at least, are not obvious.

The main features of the disturbance observer in this paper are
that it is developed for multivariable systems, it is robust to the
types of the disturbances and the a priori knowledge concerning
the bounds of the disturbances are not needed. The proposed
nonlinear-disturbance observer is inspired by the VSS control
method and adaptive algorithms. By first estimating the dis-
turbance through a higher order filter, the disturbance through
a lower order filter is inductively estimated. Stability analysis
shows that the estimation error decreases exponentially to a
steady value, which is determined by the design parameters.

To show the applicability of our design, the proposed
disturbance-estimation scheme is applied to a vertical-shaft
magnetic-bearing system, where the rotational disturbances
and their derivatives are estimated based on a linearized model
of the rotational motion. In the case of the magnetic-bearing
model, some disturbances, such as unknown angular distur-
bances, are unmatched uncertainties [13], [14]. The present
robust control theory is generally not applicable to the systems
with such disturbances. In order to account for the unmatched
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disturbances in the controller design it is a challenging task to
construct a disturbance observer that can estimate unmatched
disturbances. Focusing on the magnetic-bearing system, a
sliding mode observer for disturbance estimation was proposed
in [14] and a controller was then developed to eliminate the
disturbances. However, in [14], estimation of the derivatives
of the disturbances is subjected to the condition that the
disturbances are periodic signals with known frequencies. This
may not be the case in practice.

The application of the proposed disturbance observer shows
that the unmatched disturbances and their derivatives in the
magnetic-bearing system can be estimated without the periodic
condition. The simulation results demonstrate the effectiveness
of our new method. It should be mentioned that the estimations
of the disturbances and their derivatives are the crux of the
formulated magnetic-bearing system and the purpose of this
paper is to reveal the essential features of the disturbance
estimation. It is well known that as long as the disturbances are
estimated, it is straightforward to combine this estimation into
the controller design [1], [9], [16]. Therefore, to emphasize the
main issue, the discussion of corresponding controller designs
will not be pursued here.

The organization of this paper is as follows. Section II gives
the problem formulation. In Section III, the formulation for the
disturbance estimation is proposed for multivariable minimum
phase systems. In Section IV, the proposed method is applied
to the magnetic bearing system. Simulation results show the
effectiveness of the proposed method. Section V provides
conclusions.

II. PROBLEM STATEMENT

Consider the uncertain dynamical system described by

...
...

...
...

...
...

...
...

...
...

...
... (1)

where and denote
the outputs and inputs, respectively; are
the unknown signals composed of the disturbances, the model
uncertainties and the nonlinear parts of the system; , and

are known positive integers;
and are known at most th-order polynomials;
denotes the differential operator.

For compactness, we denote

...
...

... (2a)

...
...

... (2b)

...
...

... (2c)

...
...

... (3)

and call the signals the disturbances of the
system.

In this paper, the following assumptions are made.

A1) Without loss of generality, it is assumed that .
Remark 1: This assumption is just for the sake of simplicity.

The results developed in this paper can easily be extended to the
general case . It should be emphasized that the goal is to
develop a disturbance observer in a simpler setting that reveals
its essential features.

A2) The disturbances are bounded signals. Further-
more, are piecewise differentiable and their
first-order derivatives (at nondifferentiable points,
it is meant the right- and left-hand derivatives) are
bounded.

Remark 2: It should be noted that the a priori information
about the bounds of the disturbances is not required in this paper.
These bounds will be updated by adaptive algorithms.

Let and . Suppose

(4)

where . It can be concluded that

Further, the following assumption is made regarding .

A3) is a Hurwitz polynomial.
Remark 3: Assumption A3) means that the system (1) is in

minimum phase (with respect to the relation between the output
and the disturbance). This can be verified by firstly rewriting
system (1) in the observer canonical form

and then checking the full rankness of

for all complex numbers Z satisfying [8].
The aim of this research is to estimate the disturbances

under the condition that they are bounded and their upper
bounds are not available.
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III. FORMULATION OF THE DISTURBANCE OBSERVER

Since is also a Hurwitz poly-
nomial, multiplying both sides of (1) with yields

(5a)

Now, rewrite (5a) as

... (5b)

where, in the th equation, is a row vector whose entries are
constants, and are row vectors with appropriate di-
mensions whose entries are at most th-order polynomials
of s. Because , and are known polynomials,

, and can be calculated. Here, can
be regarded as the “relative degree” (with respect to the relation
between and ) of the th equation in (5b).

For simplicity, let

(6)

By observing (5b), it can be seen that the disturbances are
separated. Now, we will estimate the disturbance based on
the th equation in (5b). For this purpose, introduce an th-order
Hurwitz polynomial

(7)

where is a positive constant.
Dividing both sides of the th equation in (5b) with

yields

(8)

Multiplying both sides of (8) with gives

(9)

where and are defined as

(10)

Remark 4: In the derivation of (8), the validity of can-
celing is guaranteed by assumption A3). Further,

and are computable signals since is a linear
expression of the outputs and is
composed of the filters of the inputs and outputs, where
the fact that and the entries of

and are all
proper is employed.

Since are bounded signals, it can be seen that signals
are also bounded for any positive integer

.
In the next theorem, firstly, is

estimated based on (9); secondly,
is inductively estimated by using the estimate of

; and finally, the disturbance is
estimated.

Theorem 1: Construct the following differential equations:

(11)

(12)

where is the starting time; and
are the variables which can be obtained by respectively solving
(11) and (12); and are the inputs
described, respectively, by

(13)

(14)

are design parame-
ters which are usually chosen to be very small;

are updated by the following adaptive algorithms
shown in (15) and (16) at the bottom of the page.
can be chosen as any positive constants, are positive con-
stants for . It can be concluded
that are the corresponding approximate estimates of

for as is large enough,
i.e., there exist and functions
with the property such

that

(17)

for all .
Proof: See Appendix A.

Remark 5: For , it can be seen that the estimation of
is independent of the estimation of . The formula-

(15)

(16)
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tion of is motivated by the VSS discontinuous control
method [17].

Remark 6: The parameters
determine the estimating precision and the param-

eter determines the estimating speed. The parameters
should be chosen large enough to adjust the estimated

upper bounds rapidly for and .
The estimation error for the disturbances can be designed to
be arbitrarily small by choosing the design parameters. When
the analog signals are implemented by a digital computer, the
choice of the parameters is also limited by the sampling
period [1].

IV. APPLICATION TO MAGNETIC BEARING SYSTEMS

To show the applicability of our design, the proposed distur-
bance estimation scheme is applied to the rotational motion of
a vertical shaft magnetic bearing system. The magnetic-bearing
system is a device of electromagnets used to suspend a rotor
without any contact. The technique of contactless support for
rotors has become very important in a variety of industrial ap-
plications [2], [15].

Imbalance in the rotor mass will cause vibration in rotating
machines. Balancing of the rotor is very difficult and there is
often a residual imbalance. However, this imbalance problem
can be solved by feedback control. One solution method is to
compensate for the unbalance forces by generating electromag-
netic canceling forces [5], [11], [12], [14]. The cancellation of
the unbalance forces implies that these forces have to be esti-
mated first. However, the estimation of unbalance forces is a
nontrivial task and thus presents a challenge. In the following
application, it will be shown that our method can contribute to
a practical solution for the control of imbalance forces on mag-
netic bearings.

A. Model Description

The nonlinear model for the magnetic bearing assumes the
rotor is a rigid floating body whose position is represented in
the coordinate frame about the rotor’s center of mass.
Let and be the angular displacements of the rotor about the

-axis and the -axis, respectively. The five degrees of freedom
are represented accordingly as [15]

(18a)

(18b)

(18c)

(18d)

(18e)

where M is the mass of the rotor; is the axial stiffness coef-
ficient; is the damping coefficient in the axial direction; is
the acceleration due to gravity; is the rotor angular velocity;
and are the moments of inertia in the axial and radial direc-
tions, respectively; is half of the longitudinal length. ,
and are the translational disturbances, while are

the rotational disturbances. The electromagnetic forces, for
, produced by the th electro-

magnet are expressed in terms of the air gap flux and the
gap length

(19)

where and represent top and bottom electromagnets, respec-
tively; is a constant; and is the pole width.

In this paper, we only consider the rotational disturbance
identification for a vertical-shaft magnetic-bearing system.
The translational disturbances can be independently estimated
based on the dynamics in (18a)–(18c).

A linearization valid for rotational motion described in (18d)
and(18e)ispresentedin[13].This linearmodelhasstatevariables

where represents the deviation of air gap flux from
the nominal value at the th electromagnet. The resulting is

(20)

where the matrices , and are described by

(21a)

(21b)

with
, and

is the nominal value for air gap flux, is the nominal value
for gap length, is the electromagnet coil resistance,
is the permeability of free space, is the area under one
electromagnet pole, is the number of turns in each elec-
tromagnet coil [13] and [14]. The state is represented
by . The state is un-
known, however, its components and are measurable
variables. The control input is the voltage
potential applied between pairs of electromagnetic coils

. In [13] and [14], it is assumed
that the disturbance forces representing imbalance of the rotor
about its geometrical axis can be represented as sinusoidal
disturbances given by

(22)

where is the angular displacement between the geometrical
and inertial axes (amount of dynamic imbalance), is the initial
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value of . represents the actuator noise. Since
the actuator noise is matched, it will be neglected in the subse-
quent development knowing that the controller and observer can
be made robust to matched disturbances [14], [17]–[19].

The disturbance force representing imbalance of the
rotor about its geometrical axis is an unmatched uncertainties.
As pointed out in [14], the unmatched disturbance and its
derivative have to be estimated for the controller design. In the
following, it will be shown that the disturbance and its deriva-
tive can be estimated by using the result presented in Theorem 1.

B. Estimating the Disturbances and Their
First-Order Derivatives

To begin, the system (20) is written in the input–output form

(23a)

(23b)

Rewriting (23a) and (23b) in the form of (9) yields

(24)

(25a)

(25b)

(26a)

(26b)

(25a) and (26a) also imply that and .

From Theorem 1, for , we construct the following
observer equations:

(27)

(28)

where and are, respectively, determined by

(29)

(30)

with (31) and (32) shown at the bottom of the page.
Thus, and are, respectively, the estimates of

and .
In fact, Theorem 1 also gives a method of estimating the

derivatives of a given signal (see Step 2 in the proof of The-
orem 1). The derivatives and can be estimated by the
following method.

For , construct the observer equations

(33)

where are determined as

(34)

with (35) shown at the bottom of the page.
Thus, it can be concluded that and are the

estimates of and , respectively. Therefore,
and can be estimated, respectively, by

(36)

Remark 7: The boundedness of (for )
which can be derived from the definition of is employed
in the above formulation.

C. Simulation Results

The model parameter values of the vertical shaft magnetic
bearing are shown in Table I. Since the input is just cancelled
in the proposed formulation, the input is set to . The
parameters with appropriate units are chosen as

; the initial values of

(31)

(32)

(35)
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TABLE I
MODEL PARAMETER VALUES

are chosen as for and .
It should be noted that the parameters
are chosen to be very large in order that the convergence speed
of the estimating process may be very fast.

The computer simulation is carried out by using MATLAB,
where the step size (sampling period) is chosen as s.
Fig. 1 shows the differences between the disturbances and their
corresponding estimates. It can be seen that the convergence is
very fast and the estimation errors are very small. Fig. 2 shows
the differences between the derivatives of the disturbances and
their corresponding estimates. It can be seen that very good es-
timates are obtained. These results confirm the validity of the
proposed algorithm.

D. Some Discussions

By using the estimates of the disturbances, the Luen-
berger-type state observer for the system (20) can be easily
constructed as

(37)

where is the estimated state, is described by

(38)

is chosen such that is a stable matrix.
The roots of can be specified in advance.

Based on the estimates of the disturbances and their deriva-
tives and the observed state, various control schemes can there-
fore be constructed, such as the sliding-mode controller [14],
[17].

Instead of the above method, we can also express system
(23a) and (23b) (equivalently system (20) with ) in the
observer canonical form with matched disturbances as

(39)

(40)

Fig. 1. Differences between the disturbances and their corresponding
estimates.

Fig. 2. Differences between the derivatives of the disturbances and their
corresponding estimates.

where is the state variable in observer canonical form,
matrices , and are described, respectively, by

(41a)

(41b)

Based on (39), the Luenberger-type state observer can be sim-
ilarly constructed by using the estimates of the disturbances and
their derivatives. Further, the controller with the function of can-
celing the disturbances can then be synthesized [1], [9], [16],
[17].

We should mention that no matter which method we use, it is
obvious that the estimation of the disturbances and their deriva-
tives is the crux of the formulated control system. The purpose
of this paper is to reveal the essential features of the disturbance
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estimation. Therefore, to emphasize the main issue, the discus-
sion of corresponding controller designs were not pursued here.

V. CONCLUSION

In this paper, a nonlinear disturbance observer is proposed
for multivariable minimum phase systems with arbitrary relative
degrees. The estimation of one disturbance is independent of
the estimation of the others. Furthermore, the derivatives of the
disturbances can also be independently estimated. The proposed
disturbance observer is motivated by VSS method and adaptive
algorithms. The a priori information about the upper and lower
bounds of the disturbances and their derivatives is not required
and these bounds are updated online by adaptive algorithms.
The nonlinear disturbance observer is robust to the types of the
disturbances. The estimation error decreases exponentially to a
steady value, which is determined by the design parameters.

To show the effectiveness of the proposed method, the for-
mulation is applied to a vertical-shaft magnetic-bearing system
where the rotational disturbances and their derivatives are esti-
mated based on a linearized model of the rotational motion. Sim-
ulation results confirm the validity of the proposed algorithm.

APPENDIX A
PROOF OF THEOREM 1

Mathematical induction principle will be employed to prove
this theorem.

1) Step 1: Based on (9), is esti-
mated. For this purpose, let us consider the dynamical system
described by (11). Combining (9) and (11) yields

(42)

where . It can be proved that and
are uniformly bounded, and there exist
(with and a function with the property

such that

(43)

(44)

Relation (43) is proved in Appendix B. The proof of (44) is given
in Appendix C.

Therefore, by combining (42)–(44), it can be concluded
that there exists a function with the property

such that

(45)

as .
2) Step 2: We will use to estimate

by appealing to the next trivial
equation

(46)

Corresponding to (46), the next differential equation is consid-
ered

(47)

where is a signal which can be generated by solving the
differential equation in (47), is chosen as

(48)

where is defined in (16).
Denote , then from

(46) and (47), we have

(49)

It can be proved that and are uniformly bounded,
and there exist (with ) and
functions with the property

such that

(50)

(51)

The proof of (50) is given in Appendix D. Relation (51) can be
similarly proved by referring to the proof of (44) and employing
the result in (50).

Therefore, combining (49)–(51) yields that there
exists functions with the property

such that

(52)

as .
3) Step : Based on the trivial differential

equation

(53)

the following differential equation is considered:

(54)

where is a signal which can be generated by solving
the differential equation in (54), is chosen as

(55)

where is defined in (16).
By applying the results in the above steps,

we can similarly prove that there exists



576 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 4, JULY 2004

and functions with the property
such that

(56)

as .
By mathematical induction method, the theorem is proved

(from Appendix C, it can be seen that the boundedness of
is needed in the last step).

APPENDIX B
PROOF OF RELATION (43)

Choose the Lyapunov candidate as

(57)

where the unknown constant is the upper bound of
, i.e.,

(58)

If , then differentiating along (42) yields

(59)

where the inequality (58) is employed. Equation (59) means
that decreases monotonically at a speed faster than

if the condition , i.e.,
holds. Conversely, it can be concluded

that the relation can be satisfied in finite
time. Therefore, there exists such that

(60)

for , and (thus, and ) is uniformly
bounded for . By the definition of and (60),
it can be seen that for . Thus, it can
be concluded that is uniformly bounded for all .
Therefore, relation (43) is proved.

APPENDIX C
PROOF OF RELATION (44)

For , differentiating the both sides of (42) yields

(61)

where the fact is employed.
Thus, for , differentiating gives

(62)

where the facts and are
employed.

By assumption (A2), it is easy to see that
is uniformly bounded. Thus, there exists

a constant such that

(63)

If , then, from (62), it yields

(64)

i.e., decreases monotonically at a speed faster than the
constant . Thus, the presupposi-
tion cannot be satisfied for-
ever. Then, there exists an instant such that

(65)

for all . Therefore, relation (44) is proved.
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(67)

APPENDIX D
PROOF OF RELATION (50)

From (45), it can be seen that relation (50) can be proved if we
can prove that is very small as is sufficiently
large. The following analysis is carried out for .

Consider the following trivial differential equation:

(66)

First, let us show that is uniformly bounded. By
the definitions of , it gives (67) shown at the top of the
page, where and relation (65) are employed, is
an unknown constant.

Now, combining (47) and (66) yields

(68)

Choose the Lyapunov candidate as

(69)

If , then differentiating yields

(70)

By referring to the proof in Appendix B, it can be similarly
proved that and are uniformly
bounded and there exists , such that

(71)

for . Therefore, combining (45) and (71) yields the
relation (50).

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments and careful proof, which were
helpful in the improvement of the manuscript.

REFERENCES

[1] X. Chen, S. Komada, and T. Fukuda, “Design of a nonlinear disturbance
observer,” IEEE Trans. Ind. Electron., vol. 47, pp. 429–437, Apr. 2000.

[2] M. Dussaux, “The industrial applications of active magnetic bearing
technology,” in Proc. 2nd Int. Symp. Magn. Bearing, Tokyo, Japan,
1990, pp. 33–38.

[3] C. Edward and S. Spurgeon, “On the development of discontinuous ob-
servers,” Int. J. Control, vol. 59, pp. 1211–1229, 1994.

[4] , “Sliding mode observers for fault detection and isolation,” Auto-
matica, vol. 36, pp. 541–553, 2000.

[5] R. Herzog, P. Buhler, C. Gahler, and R. Larsonneur, “Unbalance com-
pensation using generalized notched filters in the multivariable feedback
of magnetic bearings,” IEEE Trans. Contr. Syst. Technol., vol. 4, pp.
580–586, Sept. 1996.

[6] S. K. Hong and R. Langari, “Robust fuzzy control of magnetic-bearing
system subject to harmonic disturbances,” IEEE Trans. Contr. Syst.
Technol., vol. 8, pp. 366–371, Mar. 2000.

[7] L. Hsu, R. Ortega, and G. Damm, “A globally convergent frequency es-
timator,” IEEE Trans. Automat. Contr., vol. 44, pp. 698–713, Apr. 1999.

[8] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice–Hall,
1980.

[9] S. Komada, N. Machii, and T. Hori, “Control of redundant manipulators
considering order of disturbance observer,” IEEE Trans. Ind. Electron.,
vol. 47, pp. 413–420, Apr. 2000.

[10] T. Mita, M. Hirata, and K. Murata, “Theory of H control and distur-
bance observer,” Trans. Inst. Elect. Eng. Jpn. C, vol. 115-C, no. 8, pp.
1002–1011, 1995. in Japanese.

[11] F. Matsumura, T. Namerikawa, K. Hagiwara, and M. Fujita, “Applica-
tion of gain scheduled H robust controllers to a magnetic bearing,”
IEEE Trans. Contr. Syst. Technol., vol. 4, pp. 484–493, Sept. 1996.

[12] T. Mizuno and T. Higuchi, “Design of magnetic bearing controllers
based on disturbance estimation,” in Proc. 2nd Int. Symp. Magn.
Bearing, Tokyo, Japan, 1990, pp. 281–288.

[13] A. M. Mohamed and I. Busch-Vishniac, “Imbalance compensation
and automatic balancing in magnetic bearing systems using the Q-pa-
rameterization theory,” IEEE Trans. Contr. Syst. Technol., vol. 3, pp.
202–211, Mar. 1995.

[14] A. E. Rundell, S. V. Drakunov, and R. A. DeCarlo, “A sliding mode
observer and controller for stabilization of rotational motion of a vertical
shaft magnetic bearing,” IEEE Trans. Contr. Syst. Technol., vol. 4, pp.
598–608, Sept. 1996.

[15] G. Schweitzer, H. Bleuler, and A. Traxler, Basics, Properties, and Ap-
plications of Active Magnetic Bearings, V.d.f. ed, Zurich, Switzerland:
Hochsulverlag, 1994.

[16] T. Umeno, T. Kaneko, and Y. Hori, “Robust servosystem design with
two-degrees-of-freedom and its application to novel motion control of
robust manipulators,” IEEE Trans. Ind. Electron., vol. 40, pp. 473–485,
Oct. 1993.

[17] V. I. Utkin, Sliding Modes in Control Optimization, New York: Springer-
Verlag, 1992.

[18] K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer’s guide
to sliding mode control,” IEEE Trans. Contr. Syst. Technol., vol. 7, pp.
328–324, May 1999.

[19] A. S. I. Zinober, Ed., Variable Structure and Lyapunov Control, London,
U.K: Springer-Verlag, 1994.


